
A Step toward Decision making in Diagnostic
Applications using Single Agent Learning

Algorithms
Deepak A. Vidhate1, Dr. Parag Kulkarni2

1
Research Scholar College of Engineering Pune

2EKLaT Research Pune

Abstract –
The output of the system is a sequence of actions in some
applications. There is no such measure as the best action in any
in-between state; an action is excellent if it is part of a good
policy. A single action is not important; the policy is important
that is the sequence of correct actions to reach the goal. To be
able to generate a policy the machine learning programs should
able to assess the quality of policies and learn from past good
action sequences.
Learning is the basic capacity of intelligent agents. An agent
changes its behavior based on its previous experiences through
learning. An intelligent agent must be formalized by knowledge
and be able to act on this knowledge. In many single-agent
systems for learning the policy of an agent in uncertain
environments, the reinforcement learning techniques have been
applied successfully. Many existing single-agent models for
sequential decision making are derived from a general model and
are distinguished by assumptions. Q-learning algorithms are
used for this purpose.
Single agent learning model is given in this paper. Four single
agent reinforcement learning algorithms are implemented and
results are compared. Single agent Q-learning Algorithm and
Sarsa Learning Algorithm gives some results for the problem.
However adding eligibility traces in single agent learning
algorithms i.e. Q(λ) learning and Sarsa(λ) learning gives
performs better than the previous algorithms. The paper shows
the results of all four algorithms and performance comparisons
among them.

Keywords – Q-learning, Reinforcement learning, Sarsa Learning,
Single Agent

I. INTRODUCTION

Consider the example market chain that has hundreds of stores
all over a country selling thousands of goods to millions of
customers. The point of sale terminals record the details of
each transaction i.e. date, customer identification code, goods
bought and their amount, total money spent and so forth. This
typically generates gigabytes of data every day. What the
market chain wants is to be able to predict who are the likely
customers for a product. Again, the algorithm for this is not
evident; it changes over time and by geographic location. If
stored data is analyzed and turned into information then it

becomes useful so that we can make use of an example to
make predictions[1].
We do not know exactly which people are likely to buy this
product, or another product. We would not need any analysis
of the data if we know it already. But because we do not
know, we can only collect data and hope to extract the
answers to questions from data.
We do believe that there is a process that explains the data we
observe. Though we do not know the details of the process
underlying the generation of data – for example, customer
behavior - we know that it is not completely random. People
do not go to markets and buy things at random.
When they buy beer, they buy chips; they buy ice cream in
summer and spices for Wine in winter. There are certain
patterns in the data. We may not be able to recognize the
process completely, but still we can construct a good and
useful approximation. That approximation may not explain
everything, but may still be able to account for some part of
the data. Though identifying the complete process may not be
possible, but still patterns or regularities can be detected.
Such patterns may help us to understand the process, or make
predictions. Assuming that the near future will not be much
different from the past and future predictions can also be
expected to be right.
There are many real world problems that involve more than
one entity for maximization of an outcome. For example,
consider a scenario of retail shops in which shop A sales
clothes, shop B sales jewelry, shop C sales footwear and
wedding house D. In order to build a single system to
automate (certain aspects of) the marketing process, the
internals of all shops A, B, C, and D can be modeled. The only
feasible solution is to allow the various stores to create their
own policies that accurately represent their goals and interests.
They must then be combined into the system with the aid of
some of the techniques. The goal of each shop is to maximize
the profit by an increase in sale i.e. yield maximization.
Different parameters need to be considered in this: variation in
seasons, the dependency of items, special schemes, discount,
market conditions etc. Different shops can cooperate with each
other for yield maximization in different situations. Several

Deepak A. Vidhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1337-1342

www.ijcsit.com 1337

independent tasks that can be handled by separate agents could
benefit from cooperative nature of agents[2].
Another example of a domain that requires cooperative
learning is hospital scheduling. It requires different agents to
represent the regard of different people within the hospital.
Hospital employees have a different outlook. X-ray operators
may want to maximize the throughput on their machines.
Nurses in the hospital may want to minimize the patient’s time
in the hospital. Since different people examine candidate with
different criteria, they must be represented by cooperative
agents. The output of the system is a sequence of actions in
some applications. There is no such measure as the best action
in any in-between state; an action is excellent if it is part of a
good policy[3]. A single action is not important; the policy is
important that is the sequence of correct actions to reach the
goal. To be able to generate a policy the machine learning
programs should able to assess the quality of policies and
learn from past good action sequences[4]. This paper is
organized as Section II gives the concept of single agent
learning, Section III describes Q-learning algorithm, Sarsa
learning algorithm is given in Section IV. Section V gives the
description about eligibility traces to be added in learning
algorithm and Section VI gives experimental setup. Section
VII put up the result comparisons of all four algorithms and
finally concluding remark with the future scope.

II. SINGLE AGENT LEARNING

Learning is the basic capacity of intelligent agents. An agent
changes its behavior based on its previous experiences through
learning. An intelligent agent must be formalized by
knowledge and be able to act on this knowledge. In many
single-agent systems for learning the policy of an agent in
uncertain environments, the reinforcement learning techniques
have been applied successfully[5].
It is possible to treat a multiagent system as a `large’ single
agent to learn the optimal joint policy using standard single-
agent reinforcement learning methods. However, both the state
and action space size exponentially with the number of agents.
Representation this approach is infeasible for most problems.
Reinforcement learning techniques are mainly helpful in the
field where reinforcement information (expressed as penalties
or rewards) is supply after a series of actions carried out in the
environment[6]. Q-Learning, Sarsa and Temporal-Difference
(TD) Learning are common RL methods.

Single Agent Model
Many existing single-agent models for sequential decision
making are derived from a general model and are
distinguished by assumptions about the parameters of the
general model. An overview of the relevant model parameters
for single agent systems are given here and some related
issues are discussed[7]. A discrete environment is focused for
simplicity which has a finite number of states and actions.

Parameters
A finite, discrete sequential decision-making problem can be
specified using the following model parameters:

 A discrete time step t = 0, 1, 2, 3,

 A finite set of environment states S. A state st є S
describes the state of the system at time step t.

 A finite set of actions A. The action selected at time step t
is denoted by at є A.

 A reward function R: S × A → R which provides the
agent with a reward rt+1 = R(st, at) based on the action at
taken in state st.

 A state transition function T: S×A×S → [0, 1] which
gives the transition probability p(st|at−1, st−1) that the
system moves to state st when the action at−1 is performed
in state st−1.

Markov Decision Process
Markov Decision Processes (MDPs) are the mathematical
foundation for Reinforcement Learning in a single agent
environment.

Definition 1: Markov Decision Process is defined by (S, A,T,
R). S is a finite discrete set of possible states. A is a finite
discrete set of possible actions. T is an unknown transition
function giving for each state and action T: S×A→S. R is an
unknown real-valued reward function of the agent R: S×A→R.

Solution techniques
To compute an optimal policy π* for a given MDP is given.
An optimal policy should for every possible situation return
the action that maximizes the performance measure. The
solution is found out by two techniques i.e. model based and
model free techniques. Model-based techniques require a
complete description of the model, while model-free
techniques, also referred to as reinforcement learning, only
learn based on the received observations and rewards.

III. Q-LEARNING ALGORITHM

The problem is modeled using a Markov decision process
(MDP). The rewards and the result of actions are not
deterministic so it has a probability distribution for the reward
p(rt+1|st,at) from which rewards are sampled and there is a
probability distribution for the next state P(st+1|st,at). These
help to model the uncertainty in the system that may be due to
forces we cannot control in the environment. The Q-learning
algorithm is used for this purpose[8].
The features of Q-learning are that it presumes no knowledge
about state transitions and reward functions. It must be
learned from the environment. In each step, the agent receives
a signal from the environment indicating its state s є S and
chooses an action a є A. Once the action is performed, it
modify the state of the environment and produce a

Deepak A. Vidhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1337-1342

www.ijcsit.com 1338

reinforcement signal r є R that is then used to evaluate the
quality of the decision by updating the corresponding Q(s,
a) values[9].
The policy π defines the agent’s behavior and is a mapping
from the states of the environment to actions. π : sa . The
policy defines the action to be taken in any state. The value of
a policy π, Vπ(st) is the expected cumulative reward that will
be received while the agent follows the policy, starting from
state st.
Algorithm : Q Learning

1. initialize all Q(s, a) to 0 arbitrarily
2. for all episodes
3. initialize s
4. repeat

5. choose a using policy derived from Q e.g. -
greedy policy

6. take action a, observe r and s’
7. update Q(s, a) as
8. Q(s, a) Q(s, a) +α (r + γ maxa Q(s’, a’) –

Q(s, a))
9. ss’

10. until s is terminal state
Discount rate parameter 0 ≤ γ < 1. It is considered as γ = 0.9.

If γ =0, then only the immediate reward counts. As γ
approaches 1, rewards further in the future count more, and it
is said that agent becomes more farsighted. γ is less than 1
because there generally is a time limit to the sequence of
actions needed to solve the task. The value of learning rate
parameter α is gradually decreased in time for convergence
and it has been shown that this algorithm converges to the
optimal Q values.

Steps in Q-Learning algorithm:

Below steps are followed as actual implementation of learning
update rule involved in Q-learning for continuous time MDP.
Let t0=0 and start with an initial arbitrary guess Q(s, a) = 0.
Step 1: At any nth transition epoch at time tn, observe the state

s and select the product action a є argmaxa Q(s, a)
with probability 1-ε and other product in A with
probability ε for some ε>0.

Step 2: If X(tn)=s and the product action was chosen is a then
update its Q value as follows:

 Q(s, a) Q(s, a) +α (r + γ maxa Q(s’, a’) – Q(s, a))…..(1)
To explore, one possibility is to use -greedy policy search
where with probability we choose one action uniformly
randomly among all possible actions i.e. explore and with
probability 1 - , we choose the best action i.e. exploit. We do
not want to continue exploring indefinitely but start exploiting
once we do enough exploration. For this, we start with a high
 value and gradually decrease it.

Repeat steps 1 & 2 infinitely. Convergence is slow as it is
typical RL algorithm. The speed of convergence can be
drastically improved using function approximations to
Q-values based on some observed features.
Initially all Q(s, a) are 0 and they are updated in time as a
result of trial episodes. Let us say we have a sequence of
moves and at each move, we use above equation to update the
estimate of Q-value of the previous state-action pair using the
Q-value the current state-action pair. In the intermediate
states, all rewards and therefore values are 0, so no update is
done. When we get to the goal state, we get the reward r and
then we can update the Q-value of the previous state-action
pairs as γr.

IV. SARSA LEARNING ALGORITHM

Sarsa is an on policy version of Q-learning where policy is
used to determine also the next action. Instead of looking for
all possible next actions and choosing the best, the on policy
Sarsa uses the policy derived from Q-values to choose one
next action a and uses its Q-value to calculate the temporal
difference. On policy methods estimate the value of a policy
while using it to take actions. They approximate Q-value, the
action values for current policy, and then improve the policy
gradually based on the approximate values for the current
policy[10]. The policy improvement can be done in the
simplest way using ε-greedy policy with respect to current
action value estimation. Sarsa learning algorithm is used for
this purpose.

Algorithm : Sarsa Learning

1. initialize all Q(s, a) to 0 arbitrarily
2. for all episodes
3. initialize s
4. repeat

5. choose a using policy derived from Q e.g. -greedy
policy

6. take action a, observe r and s’
7. update Q(s, a) as
8. Q(s, a) Q(s, a) +α (r + γ Q(s’, a’) – Q(s, a))
9. ss’ aa’

10. until s is terminal state

V. ELIGIBILITY TRACES

Eligibility traces are one of the fundamental procedures of
reinforcement learning. To obtain a more general method that
learns more efficiently we can combine Q-learning & Sarsa
methods with eligibility traces. Eligibility trace is a
provisional record of the happening of an event that is visiting
a state or the taking of an action[11].

Deepak A. Vidhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1337-1342

www.ijcsit.com 1339

Q(λ) Learning Algorithm

Q-learning is an off policy method, meaning that the policy
learned about need not be the same as the one used to select
actions. Mainly Q-learning learns about the greedy policy.
Typically Q-learning follows a policy involving exploratory
actions. Special concern is required when introducing
eligibility traces because of this[12]. Q(λ) does not look ahead
all the way to the end of the episode in its backup. It only
looks ahead as far as the next exploratory action. Watkins’s
Q(λ) looks one action past the first exploration using its
knowledge of the action values. Eligibility traces are
manipulated just as in Sarsa(λ)[13]. They are set to zero
whenever an exploratory (non-greedy) action is taken.

Model for Eligibility traces:

The trace update is thought of as occurring in two steps. First,
the traces for all state-action pairs are either decomposed by
γλ or if an exploratory action was taken, set to 0. Second, the
trace corresponding to the current state and action is
incremented by 1. The overall result is

et(s, a) = sst. aat + γλet-1(s, a) if Qt-1(st, at) = maxaQt-1(st, at)

 = 0 otherwise

whereas before xy is an identity indicator function, equal to 1

if x = y and 0 otherwise. The rest of the algorithm is defined
by
Qt+1(s, a) = Qt(s, a) + αδtet(s, a)… ……………………….(2)
where
δt = rt+1 + γmaxaQt(st+1, a’) – Qt(st, at)
Cutting off traces every time an exploratory action is taken
loses much of the advantages of using eligibility traces.

Algorithm : Q(λ) algorithm

1. initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
2. repeat for each episode
3. initialize s, a
4. repeat for each step of episode
5. take action a, observe r, s’
6. choose a’ from s’ using policy derived from Q (ε-

greedy)
7. a* argmaxb Q(s’, b)
8. δ r + γQ(s’, a*) – Q(s, a)
9. e(s, a) e(s, a) + 1

10. for all s, a
11. Q(s, a) Q(s, a) + αδe(s, a)

12. If a’ = a* then e(s, a) γλe(s, a)
else e(s, a) 0

13. s s’; a a’
14. until s is terminal

Sarsa(λ) Learning Algorithm

The eligibility trace version of Sarsa is called as Sarsa(λ). The
scheme in Sarsa(λ) is to relate the TD(λ) prediction method to

state-action pairs rather than to states. Let et(s, a) denote the
trace for state action pair s, a; substituting state action
variables for state variables the equation becomes
Qt+1 = Qt(s,a) + αδtet(s, a) for all s, a……………………..(3)

where

δt = rt+1 + γQt(st+1, at+1) – Qt(st, at)

and

et(s, a) = γλet-1(s, a) + 1 if s=st and a=at

 = γλet-1(s, a) otherwise

One step Sarsa and Sarsa(λ) are on policy algorithms. The one
step method strengthens only the last action of the sequence of
actions that led to the high reward, whereas the trace method
strengths many actions of the sequence. The degree of
strengthening falls off (according to γλ) with steps from the
reward[14].

Algorithm : Sarsa (λ) algorithm

1. initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
2. repeat for each episode
3. initialize s, a,

4. repeat for each step of episode
5. take action a, observe r, s’

6. choose a’ from s’ using policy derived from Q
(e.g. ε greedy)

7. δ r + γQ(s’, a’) – Q(s, a)
8. e(s, a) e(s, a) + 1

9. for all s, a
10. Q(s, a) Q(s, a) + αδe(s, a)
11. E(s, a) γλe(s, a)

12. s s’; aa’
13. until s is terminal

VI. EXPERIMENTAL SETUP

Model design:
Maximize the sale of products that depends on price of
product, customer age and period of sale. These are the
information available to each agent i.e. shop. So it becomes
the state of environment. Final result is to maximize profit by
increasing total sale of products.

Input Data set:
We define the action set as the sale of possible product. i.e.
A={p1,p2,p3…….p10}
Hence action a A. State of the system is queue of customer
in the particular month for the given shop agent. So state can
be described as
X(t) = { x1(t), x2(t),m }

where
x1 customer queue with age ==> { Y, M, O}
i.e. young, middle and old age customer

Deepak A. Vidhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1337-1342

www.ijcsit.com 1340

x2 price of product queue ==>{ H, M, L}
i.e. High, Medium, Low
m month of product sale ==> { 1,2,3,4…..12 }
In the system minimum, 108 states and actions are possible.
The number of state-action increases as number of
transactions increases. For simplicity, it is assumed that single
state for each transaction else the state space becomes
infinitely large. Shop agent observes the queue and decides
product i.e. action for each customer/state. After every sale
reward is given to the agent. The table shows the snapshot of
the dataset generated for single shop agent.

Table 1: Snapshot of Dataset used

In a particular season, the sale of one shop increases. With the
help of cooperative learning, other shops learn about the
increase in the sale & they can take necessary actions for their
profit maximization.
At time 0, the process X(t) is observed and classified into one
of the states in the possible set of states (denoted by S). After
identification, of state the agent chooses a product action from
A.
If the process is in state i and agent chooses a A, then

i. The process transition into state jS with probability
Pij(a)

ii. And further, conditional on the event that the next state
is j, the time until next transition is a random variable
with probability distribution Fij(./a)

After the transition occurs, product sale action is chosen again
by the agent and (i) and (ii) are repeated.

State & Action selection:
An important component of Q-learning is the action selection
mechanism. This mechanism is responsible for selecting the
actions that the agent will perform during the learning process.
Its purpose is to harmonize the trade-off between exploitation
and exploration such that the agent can reinforce the
evaluation of the actions it already knows to be good but also
explore new actions. It is common in Q-learning to use a
probabilistic approach for action selection. Actions with
higher Q values are assigned higher probabilities, but every
action is assigned a nonzero probability. ε-greedy exploration
mechanism is considered for action selection. This mechanism

selects a random action with probability ε and the best action
i.e. the one that has the highest Q value at the moment, with
probability 1- ε.
As such it can be seen as defining a probability vector over the
action set of the agent for each state. Let x={x1,x2…xi} be one
of these vectors, then the probability xi of selecting action i is
given by
xi= (1- ε) + (ε / n)…………….if Q of i is the highest
 = ε / n……………………….otherwise
where n is the number of actions in the set.
One way to assign such probabilities is
P(ai/s) = KQ’(s,ai) / ∑j.K

Q’(s,aj)
P(ai/s) probability of selecting action ai
s current state
K constant > 0. The high value of K assigns high
probabilities to action i.e. maximum reward and a small value
of K assign higher probabilities to other action i.e. minimum
reward.

VII. RESULTS

In single agent learning, the number of rewards obtained with
reference to variations in episodes, discount rate, learning rate
are shown in graphs. For a particular episode, Sarsa learning
receives more rewards than Q-learning. An increase in the
number of episodes also increases the number of rewards for
both learning methods. For minimum discount rate numbers of
rewards are less for both learning algorithms. For the same
discount rate, numbers of rewards are more for Sarsa learning
as compared to Q-learning. Single agent algorithms are
implemented and results are compared. The Q function values
are tabulated for obtaining some insights. Q tables show the
best action (that is an optimal product) for different individual
states. By knowing the Q function, the shop agent can
compute best possible product for a given state that gives
maximum profit to it.

Figure 1: Comparison of Rewards Vs Episodes for four algorithms

Transaction
ID

Age Price Month
Action

Selected
(Product)

1 Y L 1 P1,P2,P4

2 Y M 1 P2,P3

3 Y H 1 P3,P4

4 M L 1 P1,P2

5 M M 1 P1,P2,P3

6 M H 1 P4,P2

7 O L 1 P1,P3

Deepak A. Vidhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1337-1342

www.ijcsit.com 1341

Figure 2: Comparison of Rewards Vs Discount Rate for four algorithms

Following graph shows for Single agent learning that for
minimum learning rate numbers of rewards are less for both
learning algorithms. For same learning rate, the numbers of
rewards are more for Sarsa learning as compared to
Q-learning.

Figure 3: Comparison of Rewards Vs Discount Rate for four algorithms

In single agent learning the result analysis, is done by two
different ways. Firstly, for a given month & customer age
group, the product is identified. Learning shows that for a
given month and an age group which products are to be
selected that are best for sale. Shop agent will understand that
in a month which products are to be sold to the customers
having the age group. Second, it shows that in a year, the
specific number of products is purchased by particular
customer age group. Shop agent will understand that in a year
number of products is to be sold to the customers having the

different age group. Sarsa algorithm gives better results than
Q-learning and converges fast as compared to Q-learning.

CONCLUSION

Learning algorithms are best suitable for decision making.
Single agent learning is the first step of development to further
learning methods. It uses sequential decision making, the
environment is not fully observable, less expertise with less
knowledge and information. Performance is limited in the
single agent system. Hence, the future work is to emphasize
on the implementation of multiagent learning algorithms for
the scenario to overcome the limitations in single agent
learning.

REFERENCES

[1] Babak Nadjar Araabi, Sahar Mastoureshgh, and Majid Nili
Ahmadabadi “A Study on Expertise of Agents and Its Effects on
Cooperative Q-Learning” IEEE Transactions on Evolutionary
Computation, vol:14, pp:23-57, 2010

[2] Young-Cheol Choi, Student Member, Hyo-Sung Ahn “A Survey on
Multi-Agent Reinforcement Learning: Coordination Problems”,
IEEE/ASME International Conference on Mechatronics and Embedded
Systems and Applications, pp. 81 – 86, 2010.

[3] Zahra Abbasi, Mohammad Ali Abbasi “Reinforcement Distribution in
a Team of Cooperative Q-learning Agent”, Proceedings of the 9th ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, IEEE
Computer Society

[4] La-mei GAO, Jun ZENG, Jie WU, Min LI “Cooperative
Reinforcement Learning Algorithm to Distributed Power System based
on Multi-Agent” 2009 3rd International Conference on Power
Electronics Systems and Applications Digital Reference: K210509035

[5] Adnan M. Al-Khatib “Cooperative Machine Learning Method” World
of Computer Science and Information Technology Journal (WCSIT)
ISSN: 2221-0741 Vol.1, No.9, 380-383, 2011.

[6] Ethem Alpaydin “Introduction to Machine Learning” Second Edition,
MIT Press by PHI.

[7] Tom Mitchell “Machine Learning” McGraw Hill International Edition.
[8] Liviu Panait Sean Luke “Cooperative Multi-Agent Learning: The State

of the Art”, published in Journal of Autonomous Agents and Multi-
Agent Systems Volume 11 Issue 3, pp. 387 – 434, 05.

[9] Jun-Yuan Tao, De-Sheng Li “Cooperative Strategy Learning In Multi-
Agent Environment With Continuous State Space”, IEEE International
Conference on Machine Learning and Cybernetics, pp.2107 – 2111,
2006.

[10] Dr. Hamid R. Berenji David Vengerov “Learning, Cooperation, and
Coordination in Multi-Agent Systems”, in Proceedings of 9th IEEE
International Conference on Fuzzy Systems, 2000.

[11] M.V. Nagendra Prasad & Victor R. Lesser “Learning Situation-
Specific Coordination in Cooperative Multi-agent Systems” in Journal
of Autonomous Agents and Multi-Agent Systems, Volume 2 Issue 2,
pp. 173 – 207, 1999.

[12] Ronen Brafman & Moshe Tennenholtz “Learning to Coordinate
Efficiently: A Model-based Approach”, in Journal of Artificial
Intelligence Research, Volume 19 Issue 1, pp. 11-23, 2003.

[13] Michael Kinney & Costas Tsatsoulis “Learning Communication
Strategies in Multiagent Systems”, in Journal of Applied Intelligence,
Volume 9 Issue 1, pp 71-91, 1998.

[14] Chern Han Yong & Risto Miikkulainen “Coevolution of Role-Based
Cooperation in Multi-Agent Systems”, in technical Report AI07-338,
University of Texas at Austin, 2007.

Deepak A. Vidhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1337-1342

www.ijcsit.com 1342

