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Abstract –  
The output of the system is a sequence of actions in some 
applications. There is no such measure as the best action in any 
in-between state; an action is excellent if it is part of a good 
policy. A single action is not important; the policy is important 
that is the sequence of correct actions to reach the goal.  To be 
able to generate a policy the machine learning programs should 
able to assess the quality of policies and learn from past good 
action sequences.   
Learning is the basic capacity of intelligent agents. An agent 
changes its behavior based on its previous experiences through 
learning. An intelligent agent must be formalized by knowledge 
and be able to act on this knowledge. In many single-agent 
systems for learning the policy of an agent in uncertain 
environments, the reinforcement learning techniques have been 
applied successfully. Many existing single-agent models for 
sequential decision making are derived from a general model and 
are distinguished by assumptions. Q-learning algorithms are 
used for this purpose. 
Single agent learning model is given in this paper.  Four single 
agent reinforcement learning algorithms are implemented and 
results are compared. Single agent Q-learning Algorithm and 
Sarsa Learning Algorithm gives some results for the problem. 
However adding eligibility traces in single agent learning 
algorithms i.e. Q(λ) learning and Sarsa(λ) learning gives 
performs better than the previous algorithms. The paper shows 
the results of all four algorithms and performance comparisons 
among them.  

Keywords – Q-learning, Reinforcement learning, Sarsa Learning, 
Single Agent 

I. INTRODUCTION 

Consider the example market chain that has hundreds of stores 
all over a country selling thousands of goods to millions of 
customers. The point of sale terminals record the details of 
each transaction i.e. date, customer identification code, goods 
bought and their amount, total money spent and so forth. This 
typically generates gigabytes of data every day. What the 
market chain wants is to be able to predict who are the likely 
customers for a product. Again, the algorithm for this is not 
evident; it changes over time and by geographic location. If 
stored data is analyzed and turned into information then it 

becomes useful so that we can make use of an example to 
make predictions[1].  
We do not know exactly which people are likely to buy this 
product, or another product. We would not need any analysis 
of the data if we know it already. But because we do not 
know, we can only collect data and hope to extract the 
answers to questions from data.  
We do believe that there is a process that explains the data we 
observe. Though we do not know the details of the process 
underlying the generation of data – for example, customer 
behavior - we know that it is not completely random. People 
do not go to markets and buy things at random.  
When they buy beer, they buy chips; they buy ice cream in 
summer and spices for Wine in winter. There are certain 
patterns in the data. We may not be able to recognize the 
process completely, but still we can construct a good and 
useful approximation. That approximation may not explain 
everything, but may still be able to account for some part of 
the data. Though identifying the complete process may not be 
possible, but still patterns or regularities can be detected.  
Such patterns may help us to understand the process, or make 
predictions. Assuming that the near future will not be much 
different from the past and future predictions can also be 
expected to be right.  
There are many real world problems that involve more than 
one entity for maximization of an outcome.  For example, 
consider a scenario of retail shops in which shop A sales 
clothes, shop B sales jewelry, shop C sales footwear and 
wedding house D. In order to build a single system to 
automate (certain aspects of) the marketing process, the 
internals of all shops A, B, C, and D can be modeled. The only 
feasible solution is to allow the various stores to create their 
own policies that accurately represent their goals and interests. 
They must then be combined into the system with the aid of 
some of the techniques. The goal of each shop is to maximize 
the profit by an increase in sale i.e. yield maximization. 
Different parameters need to be considered in this: variation in 
seasons, the dependency of items, special schemes, discount, 
market conditions etc. Different shops can cooperate with each 
other for yield maximization in different situations. Several 
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independent tasks that can be handled by separate agents could 
benefit from cooperative nature of agents[2]. 
Another example of a domain that requires cooperative 
learning is hospital scheduling. It requires different agents to 
represent the regard of different people within the hospital. 
Hospital employees have a different outlook. X-ray operators 
may want to maximize the throughput on their machines. 
Nurses in the hospital may want to minimize the patient’s time 
in the hospital.  Since different people examine candidate with 
different criteria, they must be represented by cooperative 
agents.   The output of the system is a sequence of actions in 
some applications. There is no such measure as the best action 
in any in-between state; an action is excellent if it is part of a 
good policy[3]. A single action is not important; the policy is 
important that is the sequence of correct actions to reach the 
goal.  To be able to generate a policy the machine learning 
programs should able to assess the quality of policies and 
learn from past good action sequences[4]. This paper is 
organized as Section II gives the concept of single agent 
learning, Section III describes Q-learning algorithm, Sarsa 
learning algorithm is given in Section IV. Section V gives the 
description about eligibility traces to be added in learning 
algorithm and Section VI gives experimental setup. Section 
VII put up the result comparisons of all four algorithms and 
finally concluding remark with the future scope. 

II. SINGLE AGENT LEARNING

Learning is the basic capacity of intelligent agents. An agent 
changes its behavior based on its previous experiences through 
learning. An intelligent agent must be formalized by 
knowledge and be able to act on this knowledge. In many 
single-agent systems for learning the policy of an agent in 
uncertain environments, the reinforcement learning techniques 
have been applied successfully[5].   
It is possible to treat a multiagent system as a `large’ single 
agent to learn the optimal joint policy using standard single-
agent reinforcement learning methods. However, both the state 
and action space size exponentially with the number of agents. 
Representation this approach is infeasible for most problems.   
Reinforcement learning techniques are mainly helpful in the 
field where reinforcement information (expressed as penalties 
or rewards) is supply after a series of actions carried out in the 
environment[6]. Q-Learning, Sarsa and Temporal-Difference 
(TD) Learning are common RL methods.   

Single Agent Model 
Many existing single-agent models for sequential decision 
making are derived from a general model and are 
distinguished by assumptions about the parameters of the 
general model.  An overview of the relevant model parameters 
for single agent systems are given here and some related 
issues are discussed[7]. A discrete environment is focused for 
simplicity which has a finite number of states and actions. 

Parameters 
A finite, discrete sequential decision-making problem can be 
specified using the following model parameters: 

 A discrete time step t = 0, 1, 2, 3, . . . .

 A finite set of environment states S. A state st є S
describes the state of the system at time step t.

 A finite set of actions A. The action selected at time step t
is denoted by at є A.

 A reward function R: S × A → R which provides the
agent with a reward rt+1 = R(st, at) based on the action at
taken in state st.

 A state transition function T: S×A×S → [0, 1] which
gives the transition probability       p(st|at−1, st−1) that the
system moves to state st when the action at−1 is performed
in state st−1.

Markov Decision Process   
Markov Decision Processes (MDPs) are the mathematical 
foundation for Reinforcement Learning in a single agent 
environment.  

Definition 1: Markov Decision Process is defined by (S, A,T, 
R). S is a finite discrete set of possible states. A is a finite 
discrete set of possible actions. T is an unknown transition 
function giving for each state and action T: S×A→S. R is an 
unknown real-valued reward function of the agent R: S×A→R. 

Solution techniques 
To compute an optimal policy π* for a given MDP is given. 
An optimal policy should for every possible situation return 
the action that maximizes the performance measure. The 
solution is found out by two techniques i.e. model based and 
model free techniques. Model-based techniques require a 
complete description of the model, while model-free 
techniques, also referred to as reinforcement learning, only 
learn based on the received observations and rewards. 

III. Q-LEARNING ALGORITHM

The problem is modeled using a Markov decision process 
(MDP). The rewards and the result of actions are not 
deterministic so it has a probability distribution for the reward 
p(rt+1|st,at) from which rewards are sampled and there is a 
probability distribution for the next state P(st+1|st,at). These 
help to model the uncertainty in the system that may be due to 
forces we cannot control in the environment. The Q-learning 
algorithm is used for this purpose[8]. 
The features of Q-learning are that it presumes no knowledge 
about state transitions and reward functions.  It must be 
learned from the environment. In each step, the agent receives 
a signal from the environment indicating its state s є S and 
chooses an action a є A. Once the action is performed, it 
modify the state of the environment and produce a 

Deepak A. Vidhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1337-1342

www.ijcsit.com 1338



reinforcement signal r є R that is then used to evaluate the 
quality of the decision by updating the corresponding     Q(s, 
a) values[9].
The policy π defines the agent’s behavior and is a mapping 
from the states of the environment to actions. π : sa . The 
policy defines the action to be taken in any state. The value of 
a policy π,  Vπ(st) is the expected cumulative reward that will 
be received while the agent follows the policy, starting from 
state st. 
Algorithm : Q Learning  

1. initialize all Q(s, a) to 0 arbitrarily
2. for all episodes
3. initialize s
4. repeat

5. choose a using policy derived from Q e.g. -
greedy policy

6. take action a, observe r and s’
7. update Q(s, a) as
8. Q(s, a) Q(s, a) +α (r + γ maxa Q(s’, a’) –

Q(s, a))
9. ss’

10. until s is terminal state
Discount rate parameter 0 ≤ γ < 1. It is considered as γ = 0.9.  

If γ =0, then only the immediate reward counts. As γ 
approaches 1, rewards further in the future count more, and it 
is said that agent becomes more farsighted. γ is less than 1 
because there generally is a time limit to the sequence of 
actions needed to solve the task. The value of learning rate 
parameter α is gradually decreased in time for convergence 
and it has been shown that this algorithm converges to the 
optimal Q values.  

Steps in Q-Learning algorithm: 

Below steps are followed as actual implementation of learning 
update rule involved in Q-learning for continuous time MDP. 
Let t0=0 and start with an initial arbitrary guess Q(s, a) = 0. 
Step 1: At any nth transition epoch at time tn, observe the state 

s and select the product action         a є argmaxa Q(s, a) 
with probability 1-ε and other product in A with 
probability ε for some ε>0. 

Step 2: If X(tn)=s and the product action was chosen is a then 
update its Q value as follows:  

      Q(s, a) Q(s, a) +α (r + γ maxa Q(s’, a’) – Q(s, a))…..(1) 
To explore, one possibility is to use -greedy policy search 
where with probability   we choose one action uniformly 
randomly among all possible actions i.e. explore and with 
probability 1 - , we choose the best action i.e. exploit. We do 
not want to continue exploring indefinitely but start exploiting 
once we do enough exploration. For this, we start with a high 
  value and gradually decrease it.  

Repeat steps 1 & 2 infinitely. Convergence is slow as it is 
typical RL algorithm. The speed of convergence can be 
drastically improved using function approximations to    
Q-values based on some observed features.  
Initially all Q(s, a) are 0 and they are updated in time as a 
result of trial episodes. Let us say we have a sequence of 
moves and at each move, we use above equation to update the 
estimate of Q-value of the previous state-action pair using the 
Q-value the current state-action pair. In the intermediate 
states, all rewards and therefore values are 0, so no update is 
done. When we get to the goal state, we get the reward r and 
then we can update the Q-value of the previous state-action 
pairs as γr. 

IV. SARSA LEARNING ALGORITHM 

Sarsa is an on policy version of Q-learning where policy is 
used to determine also the next action. Instead of looking for 
all possible next actions and choosing the best, the on policy 
Sarsa uses the policy derived from Q-values to choose one 
next action a and uses its Q-value to calculate the temporal 
difference. On policy methods estimate the value of a policy 
while using it to take actions. They approximate Q-value, the 
action values for current policy, and then improve the policy 
gradually based on the approximate values for the current 
policy[10]. The policy improvement can be done in the 
simplest way using ε-greedy policy with respect to current 
action value estimation.  Sarsa learning algorithm is used for 
this purpose. 

Algorithm : Sarsa Learning 

1. initialize all Q(s, a) to 0 arbitrarily
2. for all episodes
3. initialize s
4. repeat

5. choose a using policy derived from Q e.g. -greedy
policy

6. take action a, observe r and s’
7. update Q(s, a) as
8. Q(s, a) Q(s, a) +α (r + γ Q(s’, a’) – Q(s, a))
9. ss’ aa’

10. until s is terminal state

V. ELIGIBILITY TRACES 

Eligibility traces are one of the fundamental procedures of 
reinforcement learning. To obtain a more general method that 
learns more efficiently we can combine Q-learning & Sarsa 
methods with eligibility traces. Eligibility trace is a 
provisional record of the happening of an event that is visiting 
a state or the taking of an action[11].  
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Q(λ) Learning  Algorithm 

Q-learning is an off policy method, meaning that the policy 
learned about need not be the same as the one used to select 
actions. Mainly Q-learning learns about the greedy policy. 
Typically Q-learning follows a policy involving exploratory 
actions. Special concern is required when introducing 
eligibility traces because of this[12]. Q(λ) does not look ahead 
all the way to the end of the episode in its backup. It only 
looks ahead as far as the next exploratory action. Watkins’s 
Q(λ) looks one action past the first exploration using its 
knowledge of the action values. Eligibility traces are 
manipulated just as in Sarsa(λ)[13]. They are set to zero 
whenever an exploratory (non-greedy) action is taken.  

Model for Eligibility traces:  

The trace update is thought of as occurring in two steps. First, 
the traces for all state-action pairs are either decomposed by 
γλ or if an exploratory action was taken, set to 0. Second, the 
trace corresponding to the current state and action is 
incremented by 1. The overall result is 

et(s, a) = sst. aat + γλet-1(s, a)   if Qt-1(st, at) = maxaQt-1(st, at) 

 = 0      otherwise  

whereas before xy is an identity indicator function, equal to 1 

if x = y and 0 otherwise. The rest of the algorithm is defined 
by  
Qt+1(s, a) = Qt(s, a) + αδtet(s, a)… ……………………….(2)  
where  
δt = rt+1 + γmaxaQt(st+1, a’) – Qt(st, at) 
Cutting off traces every time an exploratory action is taken 
loses much of the advantages of using eligibility traces.  
 

Algorithm : Q(λ) algorithm  

1. initialize Q(s, a) arbitrarily and e(s, a) = 0  for all s, a
2. repeat for each episode
3. initialize s, a
4. repeat for each step of episode
5. take action a, observe r, s’
6. choose a’ from s’ using policy derived from Q (ε-

greedy)
7. a* argmaxb Q(s’, b)
8. δ r + γQ(s’, a*) – Q(s, a)
9. e(s, a) e(s, a) + 1

10. for all s, a
11. Q(s, a)  Q(s, a) + αδe(s, a)

12. If a’ = a* then e(s, a)  γλe(s, a)
else  e(s, a)  0

13. s  s’; a a’
14. until s is terminal

Sarsa(λ) Learning Algorithm 

The eligibility trace version of Sarsa is called as Sarsa(λ). The 
scheme in Sarsa(λ) is to relate the TD(λ) prediction method to 

state-action pairs rather than to states. Let et(s, a) denote the 
trace for state action pair s, a; substituting state action 
variables for state variables the equation becomes  
Qt+1 = Qt(s,a) + αδtet(s, a) for all s, a……………………..(3) 

where  

δt = rt+1 + γQt(st+1, at+1) – Qt(st, at) 

and   

et(s, a) = γλet-1(s, a) + 1     if s=st and a=at 

  = γλet-1(s, a)  otherwise  
 

One step Sarsa and Sarsa(λ) are on policy algorithms. The one 
step method strengthens only the last action of the sequence of 
actions that led to the high reward, whereas the trace method 
strengths many actions of the sequence. The degree of 
strengthening falls off (according to γλ) with steps from the 
reward[14]. 
 

Algorithm : Sarsa (λ) algorithm  

1. initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
2. repeat for each episode
3. initialize s, a,

4. repeat for each step of episode
5. take action a, observe r, s’

6. choose a’ from s’ using policy derived from Q
(e.g. ε greedy)

7. δ r + γQ(s’, a’) – Q(s, a)
8. e(s, a) e(s, a) + 1

9. for all s, a
10. Q(s, a) Q(s, a) + αδe(s, a)
11. E(s, a) γλe(s, a)

12. s s’; aa’
13. until s is terminal

VI. EXPERIMENTAL SETUP

Model design:  
Maximize the sale of products that depends on price of 
product, customer age and period of sale. These are the 
information available to each agent i.e. shop. So it becomes 
the state of environment. Final result is to maximize profit by 
increasing total sale of products.  

Input Data set:  
We define the action set as the sale of possible product. i.e. 
A={p1,p2,p3…….p10} 
Hence action a A. State of the system is queue of customer 
in the particular month for the given shop agent. So state can 
be described as  
X(t) = { x1(t), x2(t),m } 

where  
x1  customer queue with age ==> { Y, M, O} 
i.e. young, middle and old age customer 
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x2  price of product queue ==>{ H, M, L}  
i.e. High, Medium, Low 
m   month of product sale ==> { 1,2,3,4…..12 } 
In the system minimum, 108 states and actions are possible. 
The number of state-action increases as number of 
transactions increases. For simplicity, it is assumed that single 
state for each transaction else the state space becomes 
infinitely large. Shop agent observes the queue and decides 
product i.e. action for each customer/state. After every sale 
reward is given to the agent.  The table shows the snapshot of 
the dataset generated for single shop agent.  

Table 1: Snapshot of Dataset used 

 

In a particular season, the sale of one shop increases. With the 
help of cooperative learning, other shops learn about the 
increase in the sale & they can take necessary actions for their 
profit maximization.  
At time 0, the process X(t) is observed and classified into one 
of the states in the possible set of states (denoted by S).  After 
identification, of state the agent chooses a product action from 
A.   
If the process is in state i and agent chooses a A, then 

i. The process transition into state jS with probability
Pij(a)  

ii. And further, conditional on the event that the next state
is j, the time until next transition is a random variable 
with probability distribution Fij(./a) 

After the transition occurs, product sale action is chosen again 
by the agent and (i) and (ii) are repeated. 

State & Action selection:  
An important component of Q-learning is the action selection 
mechanism. This mechanism is responsible for selecting the 
actions that the agent will perform during the learning process. 
Its purpose is to harmonize the trade-off between exploitation 
and exploration such that the agent can reinforce the 
evaluation of the actions it already knows to be good but also 
explore new actions.  It is common in Q-learning to use a 
probabilistic approach for action selection. Actions with 
higher Q values are assigned higher probabilities, but every 
action is assigned a nonzero probability. ε-greedy exploration 
mechanism is considered for action selection. This mechanism 

selects a random action with probability ε and the best action 
i.e. the one that has the highest Q value at the moment, with 
probability 1- ε.  
As such it can be seen as defining a probability vector over the 
action set of the agent for each state. Let x={x1,x2…xi} be one 
of these vectors, then the probability xi of selecting action i is 
given by 
xi= (1- ε) + (ε / n)…………….if Q of i is the highest 
  = ε / n……………………….otherwise 
where n is the number of actions in the set.  
One way to assign such probabilities is  
P(ai/s) = KQ’(s,ai) / ∑j.K

Q’(s,aj) 
P(ai/s) probability of selecting action ai 
s current state 
K constant > 0.  The high value of K assigns high 
probabilities to action i.e. maximum reward and a small value 
of K assign higher probabilities to other action i.e. minimum 
reward. 

VII. RESULTS

In single agent learning, the number of rewards obtained with 
reference to variations in episodes, discount rate, learning rate 
are shown in graphs. For a particular episode, Sarsa learning 
receives more rewards than Q-learning.  An increase in the 
number of episodes also increases the number of rewards for 
both learning methods. For minimum discount rate numbers of 
rewards are less for both learning algorithms. For the same 
discount rate, numbers of rewards are more for Sarsa learning 
as compared to Q-learning. Single agent   algorithms are 
implemented and results are compared.  The Q function values 
are tabulated for obtaining some insights. Q tables show the 
best action (that is an optimal product) for different individual 
states. By knowing the Q function, the shop agent can 
compute best possible product for a given state that gives 
maximum profit to it.  

Figure 1:   Comparison of Rewards Vs Episodes for four algorithms 

Transaction 
ID 

Age Price Month 
Action 

Selected 
(Product) 

1 Y L 1 P1,P2,P4 

2 Y M 1 P2,P3 

3 Y H 1 P3,P4 

4 M L 1 P1,P2 

5 M M 1 P1,P2,P3 

6 M H 1 P4,P2 

7 O L 1 P1,P3 
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Figure 2:  Comparison of Rewards Vs Discount Rate for four algorithms 

Following graph shows for Single agent learning that for 
minimum learning rate numbers of rewards are less for both 
learning algorithms. For same learning rate, the numbers of 
rewards are more for Sarsa learning as compared to     
Q-learning. 

Figure 3: Comparison of Rewards Vs Discount Rate for four algorithms 

In single agent learning the result analysis, is done by two 
different ways. Firstly, for a given month & customer age 
group, the product is identified. Learning shows that for a 
given month and an age group which products are to be 
selected that are best for sale. Shop agent will understand that 
in a month which products are to be sold to the customers 
having the age group. Second, it shows that in a year, the 
specific number of products is purchased by particular 
customer age group. Shop agent will understand that in a year 
number of products is to be sold to the customers having the 

different age group. Sarsa algorithm gives better results than 
Q-learning and converges fast as compared to Q-learning.    

CONCLUSION 

Learning algorithms are best suitable for decision making. 
Single agent learning is the first step of development to further 
learning methods. It uses sequential decision making, the 
environment is not fully observable, less expertise with less 
knowledge and information. Performance is limited in the 
single agent system. Hence, the future work is to emphasize 
on the implementation of multiagent learning algorithms for 
the scenario to overcome the limitations in single agent 
learning.  
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